
National Aeronautics and Space Administration

www.nasa.gov

Basic Debugging!

October 10, 2012!
NASA Advanced Supercomputing Division !

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Outline!

•  Code Porting vs. Debugging!
•  Debugging with Intel Compiler Flags!
-  Case study #1: -g -traceback -check -fpe0 !
-  Case study #2: non-deterministic behavior!
-  Case study #3: incorrect algorithm, sensitivity to round-off!

•  Debugging with TotalView!
-  Getting started with TotalView on Pleiades!
-  Simple navigation with the GUI!
-  Case study #4: program hang!
-  Where to get more information on using TotalView!

2

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Code Porting vs. Debugging!

  Debugging in this webinar refers to debugging codes written in Fortran, C or C++!
  Debugging may be necessary as part of the porting process!

Why? Because you are getting wrong or different or no results!
•  The first two of these could be a machine precision issue, or a compiler optimization issue  

(See “Porting” above)!
•  The 3rd could be due to a program hang, segfault, abort, etc.!

  Debugging may be necessary if you are writing new code or modified an existing one!

3

Porting -- Getting a code, generally from somewhere else, to compile/build and generate
“expected” results on the target machine. If the results are unexpected, then:

1.  Compile with -fp-model precise
2.  Lower compiler optimization: try compiling with -O1 or -O2 (default for Intel)
3.  Try a different combination of compilers and libraries

There are 30+ compilers, 20+ MPI libraries, 6 NetCDF and 15 HDF libraries on Pleiades!

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Debugging with Intel Compiler Flags!

For Fortran use: -g -traceback -check -fpe0!
For C/C++ use: -g -traceback!
-g!
-  Tells compiler to generate full debugging information in the object file (.o file)!
-  Changes the default optimization to -O0, so need to explicitly add -O2 if no optimization

level was previously specified!
-  Always compile with -g when using debuggers (i.e., TotalView)!

-traceback!
-  Provides traceback information with source file, routine name, and line number when a

severe error occurs at run time!
forrtl: error (73): floating divide by zero

Image PC Routine Line Source

buggy 0000000000403144 sub1_ 24 buggy.f

buggy 0000000000402ECF MAIN__ 13 buggy.f

buggy 0000000000402C0C Unknown Unknown Unknown

libc.so.6 00007FFFECF2FBC6 Unknown Unknown Unknown

buggy 0000000000402B09 Unknown Unknown Unknown

!
4

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Debugging with Intel Compiler Flags (2 of 3)!

5

-check (same as -check all)!
-  checks for array bounds violation (same as -check bounds)!

•  Example: dimension a(100) and the code uses a(101) = …!
-  checks for use of uninitialized variables (same as -check uninit)!

•  Caution: the checking is very limited in scope!
-  checks for format, output_conversion, pointers, etc. … generally, unlikely to be the culprit!
-  Important: -check causes the program to run slow! Leave off after debugging!
!

-fpe0!
-  traps floating-point exceptions, i.e., divide-by-zero, sqrt of negative, etc.!
-  when compiling with -fpe0, all source files need to be compiled with this flag  

(or with -fp-speculation=off) to avoid false-positives!
•  Example: if (z .ne. 0.0) then  

 y = 1/z 
 else  
 y = 1 + z 
 endif!

!

both branches are executed simultaneously  
and one branch is discarded after evaluating  
the if conditional!

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host! 6

Debugging with Intel Compiler Flags (3 of 3)!

Example of array bounds violation message!

forrtl: severe (408): fort: (2): Subscript #1 of the array Y has value 101 which
is greater than the upper bound of 100

Image PC Routine Line Source

buggy 000000000046AFCA Unknown Unknown Unknown

buggy 0000000000469AC6 Unknown Unknown Unknown

buggy 0000000000421DE0 Unknown Unknown Unknown

buggy 0000000000404B6E Unknown Unknown Unknown

buggy 0000000000405091 Unknown Unknown Unknown

buggy 00000000004033D9 sub1_ 27 buggy.f

buggy 0000000000402F82 MAIN__ 13 buggy.f

buggy 0000000000402C0C Unknown Unknown Unknown

libc.so.6 00007FFFECF2FBC6 Unknown Unknown Unknown

buggy 0000000000402B09 Unknown Unknown Unknown

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Case Study #1: Program buggy!

7

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Case Study #1: Initial run and debug!

8

Note wrong answer after
calling sub1 and program
hang.

Note variable name and
offending line number in
the traceback.

forrtl is the Fortran
Runtime Library (RTL)

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Case Study #1: Modify code and re-run!

9

Need to assign a value to
“c” before use, but for now
just comment line 11 out
and continue.

Recompile and re-run.
The code now aborts
with a divide-by-zero
(caught by -fpe0) at line
24.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Case Study #1: Modify code and re-run!

10

“c” wasn’t assigned a value,
so it turned out to be 0.0
(but you can’t always
depend on uninitialized
variables having a value of
zero!).

“c” was passed into sub1, so
the dummy argument “z” has
a value of 0 -- triggering the
divide-by-zero at line 24.
But WAIT ... note that the
RTL didn’t catch that “z” was
being used at line 23 even
though it hasn’t been
initialized!

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Case Study #1: Modify code and re-run!

11

Need to fix the divide-by-
zero, but for now just
comment it out and
continue.

Arrays a and b, which are
passed into sub1 as x and y,
were declared with
dimension NMAX=100.

If y were a multi-dimensional
array, the forrtl complaint
could point to subscript #2 or
#3, for example.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Case Study #1: Modify code and re-run!

12

Need to change the limits of
the DO loop at line 26 or
increase NMAX, but let’s
see what happens when the
arrays x and y are
dimensioned 1 (or *) as in
many legacy codes. This is
perfectly legal Fortran, btw.

The -check flag no longer
catches array bounds
violation on arrays x and y
and the program ends
without errors, but the result
is unexpected.

This is the correct behavior
after the remaining array
bounds violation bugs have
been removed.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Case Study #1: Take home!

•  If arrays are dimension 1 or *, for example, a(1), x(1,nj), then array bounds
checking on those arrays is ineffective.!

•  Checking of uninitialized variables is limited in scope. 
(However, check back for the next webinar on “Uninit,” which provides a technique
for trapping all uninitialized variables)!

•  Debugging with compiler debug options is useful for catching most common bugs,
but not all bugs. So, just because a code has passed a “health check” using the
compiler debug options does not mean it’s bug-free.!

•  Debugging with compiler flags is an iterative process: 
compile run modify compile run ...!

•  To streamline the iterative process, get an interactive PBS session: 
qsub -I -q devel -lselect=NN:ncpus=YY,walltime=2:00:00  
and make successive runs in the same PBS session. 
To avoid typing all the commands in runscript, just make it executable  
(chmod u+x runscript) and run interactively: 
./runscript!

13

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Case Study #2: “Magic Trick”!

14

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Case Study #2: Non-deterministic behavior!

15

Different versions of ifort
give different answers
on Columbia.

Code aborts with a
segfault with Intel
compiler and gives one
of the two Columbia
results with PGI
compiler.

Take home:
•  Bugs can cause different results with different compilers, different machines, different

compiler options, etc.
•  Just because you get the same results doesn’t mean the code is bug-free!

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Case Study #2: Bug Revealed!

16

The segfault with ifort on
Pleiades is a clue that
there is a bug in the
code, so compile with
debug flags.

Fortran passes by
address into routines, so
iflag in switcha contains
the memory address of
the literal constant .True.,
and, thus, it cannot be
overwritten at line 20.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Case Study #2: Simpler “Magic Trick”!

17

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Case Study #3: Improper algorithm  
or sensitivity to round-off error!

18

lim
x→∞

x2 +3x − x2 + 2x{ }

Write a program to evaluate:

Note: 3 has been changed to 3.248 to show loss of significant figures in the results.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Case Study #3: Results!

19

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Case Study #3: Take home!

•  Note that for x > 1016 the 3.248x and 2x terms under the square root get dropped
off compared to x2.!

•  The correct answer, 0.624 to 15 significant figures, is only obtained for a very
narrow range in the value of x (if at all) for this program.!

•  If the formula used in the program is changed to the one above on the right hand
side, then the correct answer can be obtained for any x > 1016.!

•  Is the issue here one of round-off errors or incorrect formula?!
•  Part of debugging is figuring out when the answers are as good as they are going

to get due to sensitivities to round-off error, unstable algorithm, etc.!

20

lim
x→∞

x2 +3x − x2 + 2x{ }=1/ 2

x2 +3x − x2 + 2x{ }
x2 +3x + x2 + 2x()
x2 +3x + x2 + 2x()

=
x

x2 +3x + x2 + 2x()
Analytical answer:

lim
x→∞

x2 +3.248x − x2 + 2x{ }= 0.624

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Debugging with TotalView!

21

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Getting started with TotalView on Pleiades!

1.  Make sure that you can display X11 graphics from pfe!
-  log in with ssh -X or add “ForwardX11 yes” to your .ssh/config file on your workstation!
-  echo $DISPLAY should show some setting for the DISPLAY environment set by ssh!
-  test by running xclock!
-  may need to use VNC if interactive response is very slow!

2.  Compile your code with the -g compiler flag!
3.  Submit an interactive PBS job and forward your DISPLAY environment!
-  qsub -I -v DISPLAY -q devel -lselect=N:ncpus=XX,walltime=HH:MM:SS!

4.  Once the PBS job has started, load the totalview module if it is not automatically
loaded from your .login or .cshrc file!
-  module load totalview/8.9.2-1!

5.  Start totalview with either:!
 totalview ./exe [-a args] ! !for serial or OpenMP programs 
 or 
 mpiexec_mpt -tv -np <nprocs> ./exe !for MPI or hybrid programs (assumes MPT)!

22

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

TotalView Start-up View!

23

Enter arguments or standard I/O files, if any, by
clicking on the appropriate tab, and click OK.

Root Window
(opens up 1st)

Process Window

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Simple Navigation with the GUI!

24

Press “Go” above and then
click on “Yes” to the question
if you want to stop the job
now... to see your program in
the Source (middle) pane, and
set Breakpoints (processes
halt when they reach a
breakpoint).

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Search Path for Source Code!

25

Put the executable and source files in the
same directory, if possible, to make it easy
for TV to find the source code. Otherwise,
use the Search Path window from the File
pull-down menu to enter the directory(ies)
for the location of the source code.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Navigate in Process Window!

26

Next -- goes to the next
line in the program even
if it is a function or
routine Step -- same as
Next except that it will
step into the function or
routine
Out -- runs to the
completion of the
function or routine and
steps out to the caller.

Breakpoints can be
set at any location
containing a
rectangular box by
clicking on the box,
or via the Action
Point pull-down
menu above.

Go -- starts the
program running
Halt -- stops it
Kill -- kills all the
processes
Restart -- restarts
from the beginning

Arrows navigate the
view of the source code
up or down the call
graph.

Program is still halted at the
beginning, click Go to run to the
first breakpoint at line 19.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

At first breakpoint!

27

Process window for Rank 0

Press P+ or P- to see
other processes up or
down in rank

Location of program
counter shown by arrow
and highlighted in yellow

All processes at first breakpoint

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Diving!

28

Hover over variables to display their
value or Dive into an array by
clicking on the right mouse button
while the pointer is on the array.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Data Display!

29

Data Window displays the elements
of array “a” and the Visualize Tool
displays the array graphically.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Visualizer, Data Slicer, and Filter!

30

Control which slice of the array to display
by entering a constant value for one or
more dimension.

Filter which values to display

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Result of Data Filter!

31

Show values greater than 1.0

This could be useful to
identify anomalies in an
input grid, for example.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Viewing data across processes!

32

Set a second breakpoint,
press “Run To” second
breakpoint, and display
value of loc_sum across all
processes.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Values that change are highlighted!

33

Clicked Step once to execute the line
evaluating loc_sum and any changes in
the displayed data is highlighted in yellow.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Debugging program hang!

34

Click on second breakpoint to remove it, and
hit “Go” to continue running. The partial sum
is printed out by each rank, but then the
program just hangs.

Now click on “Halt” to stop the processes and
investigate where they are in the program.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Stack trace!

35

The Source pane
shows the binary
code deep inside the
MPI library. Click on
the last stack of your
source code to see
where it is calling the
MPI routine.

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

View from two snapshots of the Process Window!

36

Rank 0 is at the MPI_recv Rank 1 (and all the other ranks) are at MPI_finalize

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Re-run the program and set a  
breakpoint at the MPI_send!

37

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Bug Revealed!

38

Mis-match of tags in the send and recv

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Where to find additional information 
on using TotalView!

Online videos produced by TotalView developers and engineers:!
http://www.roguewave.com/products/totalview/resources/videos.aspx!

!
•  Getting Started with TotalView!
•  Debugging MPI!
•  Introducing C++View!
•  Setting Breakpoint References for Threads!
•  Viewing Data Across Threads!
•  Threads Navigation!
•  Asynchronous Thread Control!
•  Debugging OpenMP!
•  C++ STL Type Transformations!
•  Memory Debugging with MemoryScape!
•  Memory Debugging with Red Zones!
•  Deterministic Replay with ReplayEngine!

!

39

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Online Documentation on Pleiades!
pfe12> which totalview!

/nasa/sles11/totalview/toolworks/totalview.8.9.2-1/bin/totalview!

pfe12> cd /nasa/sles11/totalview/toolworks/totalview.8.9.2-1/doc!

pfe12> ls!

pdf/!

pfe12> cd pdf!

pfe12> pwd!

/nasa/sles11/totalview/toolworks/totalview.8.9.2-1/doc/pdf!

pfe12> ls!

MemoryScape_Installation_Guide.pdf!

MemoryScape_New_Features_Guide.pdf!

MemoryScape_User_Guide.pdf!

ReplayEngine_Getting_Started_Guide.pdf!

ReplayEngine_New_Features_Guide.pdf!

TotalView_Installation_Guide.pdf!

TotalView_New_Features_Guide.pdf!

TotalView_Platforms_and_System_Requirements.pdf!

TotalView_Reference_Guide.pdf!

TotalView_User_Guide.pdf!

40

